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Some Questions

» The brain seems to be a biological neural network. Is its
functionality really understood?
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Some Questions

» The brain seems to be a biological neural network. Is its
functionality really understood?

» Artificial neural networks, used in deep learning, show great
successes. Why exactly?

» Are the nodes in an optimized artificial neural network trained
in a way to maximize information flow?

» Maximize biological neurons (local) information flow?
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Overview

» Basic concepts from information theory
>

>
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Channels

X ——| Channel: f(ylz) |—— v

How much information can you get across a channel?

H(X) =— / f(x)log f(x)dx entropy of X

H(Y | X) conditional entropy of Y given X
I(X;Y)=H(Y)—H(Y | X) mutual information between X and Y

C= ma;(xl(X; Y) capacity of the channel
P
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Example: Binary Symmetric Channel (BSC)
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Mutual Information:
I(X;Y)=H(po(1 —€) + pre,epo + (1 — €)p1) — H(e,1 —¢)

The maximum of /(X; Y) over all input distributions (pog, p1) is
attained at the uniform distribution (pg, pi) = (0.5,0.5).

Capacity:

C=1+4+(1—-¢)logy(l—¢)+clog,e
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Example: Binary Symmetric Channel (BSC)

Capacity as a function of the error probability e:

Cosc(e) =14 (1 —¢)logy(1 —¢) +clogy )
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Example: Gaussian Channel (AWGN)

X (= V=X +W
by

Average power constraint: E[X?] < M

Noise distribution is zero-mean Gaussian:

1
W ~ fyy(x) = exp (— x%/20°
Capacity:
c=1tm (14 M/o?) = E In(1+ SNR)
2 2
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Overview
>

» Cortical neurons and neural networks

>
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Cortical Neural Networks

Neuroscientists have constructed a network map of connections between cortical neurons, traced from a 100
terabytes 3D data set. The data were created by an electron microscope in nanoscopic detail, allowing every one of
the "wires” to be seen, along with their connections. Some of the neurons are color-coded according to their
activity patterns in the living brain. (credit: Clay Reid, Allen Institute; Wei-Chung Lee, Harvard Medical School;

Sam Ingersoll, graphic artist)
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A Typical Cortical Neuron

axon

axon hillok

body

dendritic tree

The axon branches to
contact other neurons.

A dendritic tree collects
input from other neurons.

Axons contact dendritic
trees at synapses and inject
spikes of activity.

An axon hillock generates
outgoing spikes whenever
enough charge has flowed in
at synapses to depolarize the
cell membrane.




Synapses

dendrites

» When a spike travels along an axon and arrives at a synapse,
vesicles of a transmitter chemical are released.

» The transmitter molecules diffuse through the synaptic cleft
and bind to receptor molecules in the membrane of the
post-synaptic neuron.

» This opens up holes that allow specific ions to cross.
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Synapses




Synapses

>

Synapse

The effectiveness of the synapse can be changed by

» varying the number of vesicles of the transmitter
» varying the number of receptor molecules

Synapses are slow, but

» they are very small and very low-power
» they adapt using locally available signals
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How (most people think) the brain works

>

Each neuron receives input from other neurons

» A few neurons are connected to receptors.
» Neurons use spikes to communicate.

The effect of each input line on the neuron is controlled by
synaptic weights
» Weights can be positive or negative.

The synaptic weights adapt so that the whole network learns
to perform useful computations

» Recognizing objects, understanding language, making plans,
controlling the body

Humans have about 10! neurons each with about 10*
weights

» Computations in parallel in a short time, huge bandwidth
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Overview

» Artificial neurons and neural networks (ANN)
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Idealizing Neurons

Substitute spikes by real values x;, model intensities by weights w;.

y = Q(ZW,"X/)

dendritic tree

What types of activation
functions @ are appropriate?

wy -y

'LU2 . x?

w; - T
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Sigmoid Neurons

» First compute a weighted sum of the inputs.

» Send out a sigmoid function of the weighted sum.

06 N
E zwlwl I T ——»y
04

1+4e 2’

1
y:Q(ZW,-x,-), RQ(z)=——,z€R
i
» The logistic function with convenient derivatives
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Linear Neurons

» First compute a weighted sum of the inputs.

» Send out a linear transformation of the input.

> Wi T

}/ZQ<ZW,‘X,'>, Q(z)=az+b
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Rectified Linear Neurons

» First compute a weighted sum of the inputs.

» Send out a rectified linear function of the weighted.

7
,

QO
/ !

> Wi T

y:Q(ZWiXi)’ Q(z):{o’ if z<0

z, ifz>0
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Censoring Neurons

» First compute a weighted sum of the inputs.

» Send out a censored linear function of the weighted sum.

Q
Ziwimi E— =y
0, ifz<O
yzQ(Zw;x;), Qz)={z ifo<z<1
i 1, ifz>1
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Binary Threshold Neurons
McCulloch-Pitts (1943) (influenced Von Neumann)

» First compute a weighted sum of the inputs.

» Send out a fixed size spike of activity if the weighted sum
exceeds a threshold g.
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Deep Neural Networks - an Information Theoretic View

Information is passed from input X to output Yy layer by layer.
The network forms a sequence of consecutive channels:

Y, X, T1,..., Th—1, Tn  (a Markov chain)
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Deep Neural Networks - an Information Theoretic View

) Vs N
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] >
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° o 00
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P >
J i ~
Y X T Th1 T, Y

Consider I(X; T1) > --- > I(X; Tp) > I(X; Y)

Naftali Tishby [2017]: When optimizing parameters of the DNN

e /(X; T;) first increases, then decreases,
e /(T;; Y) tends to its max with the number of iterations.

RWTHAACHEN
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Deep Neural Networks - Naftali Tishby's Result

I(T;Y)

RWTHAACHE!
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Inside Deep Learning

New experiments reveal how deep neural networks evolve as they learn.
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Deep Neural Networks - an Information Theoretic View

In the following consider nodes in isolation.
Is there a typical information theoretic behavior?
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Artificial Neural Network

Neurons can be considered as channels.
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Overview

» Channels describing neurons in ANN
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Binary Threshold Neurons = Quantization Channel

X - A »JZL»{OJ}

W

1, ifs>
Y= QX+ W),  Qs)= e =a
0, otherwise

X, W stochastically independent r.v.

X ~ F, input with cdf F
W ~ &, noise with cdf ¢
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Quantization Channel

X %\ 7 , Y 0.1}
w

Weighted self information

p(p) = —plogp, ,0<p<1

Mutual Information
KXﬂﬁ:+p(/¢@—xMH@)
_/p@@_xwm@)
+4@-/¢@—xwﬂm)
- [ pl1-o(q - x))dF(x)

RWTH.
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Censored Channel
X Z Q Y
—>$—~ — [07 1}
W
0, ifz<0O
Y=QX+ W), Qz)={z ifo<z<1
1, ifz>1

X, W stochastically independent r.v.
X ~ F, input with cdf F
W ~ @, noise with cdf ¢
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Censored Channel
X z y Y o

Mutual Information
I(X;Y) =+ p(/q>(o — X)dF())
- / p(®(0 — x)dF(x))

+p(1 - /q>(1 —x)dF(x))

- /p(l (1 — x))dF(x)

+/Olp(/so(y—X)dF(X)>dy
- Ol/p(w(y—X))dF(X)dy
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Rectified Linear Channel

X Z Q Y
St / — [0,0)
t

w

0, ifz<O

Y = Q(X + W), Q(Z)Z{Z if2>0

X, W stochastically independent r.v.
X ~ F, input with cdf F
W ~ @, noise with cdf ® and density ¢
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Rectified Linear Channel

Mutual Information

Rudolf Mathar, ITNAC 2017 — 22 Nov. 2017

= [0,00)
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Linear Channel

X Z Q Y
—»?—— —»(_00700)

Y =QX+ W),  Qz)=2z

zeR

X, W stochastically independent r.v.
X ~ F, input with cdf F
W ~ @, noise with cdf ® and density ¢
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Linear Channel

X zZ V Y
- ——(-00,00)
f

Mutual Information
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Mutual Information of Neuron Channels

Binary threshold Censoring Rectified linear

w

w
w

= d( z j = {0.1} X 4»(%>_>z Y%Y [0.1] - % - y - e

+ P(/®(q - x)dF(x)) n p( /4)(0 _ x)dF(x)) + p(/¢(0 - x)dF(x))
_ /P(®(q — x)dF(x)) _ /p(q,(o — x)dF(x)) - /p(d>(0 — x)dF(x))

+o(1- /®(q — X)dF(x))

+o(1- /¢(1 — X)dF(x))
_ /p(l — (g — x))dF(x)

~ [ o= 001 = x)dF ()

+./Olp('/kp(yfx)dF(x)>dy +/0%p(/so(y—><)dF(X))dy

- /Ol/p(so(y—X))dF(X)dy B /0“ /p

(ply = x))dF(x)dy

» Determining capacity means to optimize each over the input

distribution F.

» We focus on the binary threshold case.
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Mutual Information of Neuron Channels

Censoring Rectified linear Linear
%yg", 0,11 L’(‘?L’ 77 e o L(?L 7 e
+( / (0 — x)dF(x)) +n( / (0 — x)dF(x))

- /p(4>(o — X)dF(x)) - //J(“’(O — x)dF(x))

+p(17/®(17x)dF(x))
7/‘;) 1- o1 — x))dF(x)
1 oo
+/(; P /«p(y—xdF x))dy +/ p(/ y—x)de)dy +/ /@(Y*X dF(X))dy
—// @y — x))dF(x)dy —/ / @(y — x))dF(x)dy / / @(y = x))dF(x)dy

» Determining capacity means to optimize each over the input
distribution F.

» We focus on binary threshold case.
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Overview

v

Binary threshold neurons
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Capacity of the Binary Threshold Neuron

Results:

» The peak-power constrained capacity-achieving input has
discrete support.

» This input is concentrated on two mass points.
» Input probabilities are known in closed form.
» Channel capacity is known in closed form.

» The optimum threshold is unknown in general, however, we
will discuss it for a relevant case in neuro science.

Rudolf Mathar, ITNAC 2017 — 22 Nov. 2017
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Capacity of the Binary Threshold Neuron

Fix quantization threshold g, set 7, = ®(g — x;).

The capacity-achieving distribution in the class D, of all
distributions with finite support [x1, xn] C R is given by the
two-point distribution concentrated on {xi, x,,} with probabilities

s 1-(+2")m

B (1+a)n—1
P 0 )01 — )

(1+2%)(m —vm)

and pj, =

Further,

C(Vlﬁm) = m[?X I(p77) = Ioga(l + as) - (S + t)

with 5=Wand f:%'
and h(p) = —plog,(p) — (1 — p)log,(1 — p).

Rudolf Mathar, ITNAC 2017 — 22 Nov. 2017
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Capacity as a function: C(7y1,Vm)

Theorem. C(71,7m) as a function of (y1,72) € [0, 1]? has the
following properties.

> C(v1,7vm) is symmetric in the sense that
C(y1,7m) = C(1 = ym, 1 — 7).

» C(7v1,7m) is a strictly increasing function of ~; and a strictly
decreasing function of v, 0 < vy, <1 < 1.

» C(71,7vm) is a convex function of (y1,7m) € [0,1]2. It is even
strictly convex whenever v1 # 7p,.

CHEN
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Visualizing C(7y1,vm)

Recall y1 = (g — x1), v7m = ®(q — Xm)

Fundamental question: What is the optimum threshold?

CHEN
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Optimum Threshold

XH?ZH j Y o
w

Solve

C
max (Y15 Ym)

such that v, = ®(g — x;),i =1, m

If the noise distribution is symmetric and has zero mean, is the
capacity optimizing threshold ¢* = (x1 + xp)/2 ?

RWTHAACHEN
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Gaussian Noise

Yes, for Gaussian noisel!
Maximum capacity C(qg*) is attained at the centroid g. =
and is a strictly increasing function of SNR.

X1+Xm
2

C(SNR) = log(2) — h(%erfc( %))

Gauss ((Ic )

Cgauss ((1(:) 1]

N[

‘ | . SNR
1 2 3 1073 1072 10! 10° 10" 107

=]
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Rectangular Noise

Distribution function with support [up, u,]:

0, w < up,
Prect(w) = K:Zia up < w < u,
1, u < w,

Density function:

u < w < u,

0, otherwise,

1
SDReCt(W) — {Ur—ue 9
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Rectangular Noise

Using symmetry, monotonicity and convexity (see above):

» If u, — up < xm — X1, then
C* =log,2 is attained at any

q € [Xl—{—U,,Xm—FUg].
with pj = pj, =1/2.

> If u, — up > x» — x1, then
C* = hy(7) — pi ha(71) + P35 ha(ym) is attained at

*

q < {X1+Ur7Xm+U£}
Y—=9m p* — 11—
Yi—=Ym' M Y1—Ym

with p] =
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Rectangular Noise

Consider input x; = —1, x,», = 1 (power 1) and noise with pdf

pw)

7\7777771>777T777\7777777777I777—[777I777T777I777T

| | I | | 1 I I I | I I
e | e e ; - - dA-— - -t - - — -+

| | 1 | B T B 1 1 | | 1
'l“l‘T"""T"‘lT—'"T "'_‘!T"'I'"T"‘I“l‘T
-6 -4 -2 0 2 4 6 Y
—b b

such that 3
SNR = € {1/10,1,2,3,10}
RWTHAACHEN
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Rectangular Noise
manGR C(’yl77m) such that Vi = (D(q — X,'), | = ]_7 2

1.0

SNR € {1/10,1,2,3,10}
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Rectangular Noise

Capacity as a function of threshold g

SNR € {1/10,1,2,3,10}
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Rectangular Noise
Any g between the optimum "peaks” yields a BAC.

O——"—=©

€

0
OO
The optimum g* yields a Z-channel of higher capacity.

O———©

@/@

1—-90

Hence, Z-channels evolve in a rather natural way as optimum
one-bit quantization channels.
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Rectangular Noise

N

| | SNR
1 2 3
Capacity as a function of SNR.
RWTH
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Rectangular Noise
1+
|
| 1
|
|
1 |
= |
2 |
|
| Cfllect (QC)
|
|
0 = i Sl\I;R

103 1072 10~t 10° 3 10t 102

Capacity as a function of SNR (logarithmic).
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Mixture of Two Gaussians Noise

N —————

7

0.8/

Gaussian mixture, variance 0.25 each

0.0

00 02

0.4 % 0.6 0.8 1.0

Contours of C(v1,vm)
xm—>x1=1, 15,2, 25,3
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Overview

>

>

» Molecular information exchange
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Molecular Information Exchange
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Molecular Information Exchange

R ~
. IS S
X R ¢ :Iﬁ'u’/ /} } Counter —= Y
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Molecular Information Exchange

Counter —= Y
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Molecular Information Exchange

o ° e
o ¢ O . la
° \ ) —
° o n/ r‘/\ < /"/ v
o/ \ Count —
X . ] / \ N | ounter
\( o /
o ® Ve — .
- ° °
° e ° .
o o W
° °

System model for a Poisson diffusion channel with parameter «a:

X:N.s,sN(Xl X’"),ogxl,...,xmgl
pL - Pm
W ~ Poi (\) independent of X

It holds
PYI$=% — Poi (aNx; + \) = Poi ()

m K
P(Y = k) = Zpie‘”’% = Gk
i=1 '

CHEN
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Molecular Information Exchange

X ° e e .} Counter Y
o ° “i. .
o o . W

Mutual information: (v; = aNx; + A)
—ZCM” qk = H(Zpi Poi (%))
i=1
H(Y|X) = Zp, P0| (’y,
I(X;Y)=H(Y)—H(Y|X) = (Zp, Poi (i ) Z pi H(Poi (7))
i=1
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Molecular Information Exchange

Various representations of mutual information:

I(X; Y) = H(Y) — H(Y|X)

m

:H<Zp,-Poi(fy,> Zp, P0| fy,
i=1
=1-D (ipIPOI 'Yl ‘PO| ) ZP/V/ In’Yl
i=1
=S (e ) Sl
k=0 i=1

with p(z) = —zInz

Determining capacity of Poisson channels is notoriously hard.
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Molecular Information Exchange

Numerical calculation of the capacity as a fuction of the support

span:

blue: general capacity

green: 3 support points
(opt. positions)

red: 3 support points (2
extreme, 1 in the middle)

green: 2 support points (2
extreme)
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Still to be done ...

» Do artifical neurons optimize capacity when learning?

» Do biological neurons do the same?

» Can information theory speed up learning of ANNs?

» ANNs with Feedback / cross channels / unlayered structure?

» Capacity-achieving distribution of the molecular information

channel?

» Many technical questions ...
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Thanks for your attention!

Questions or Comments?

Papers are available from

http://www.ti.rwth-aachen.de/publications/
mathar@ti.rwth-aachen.de
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